Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 207: 108328, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183902

ABSTRACT

The implementation of salt stress mitigation strategies aided by microorganisms has the potential to improve crop growth and yield. The endophytic fungus Metarhizium anisopliae shows the ability to enhance plant growth and mitigate diverse forms of abiotic stress. We examined the functions of M. anisopliae isolate MetA1 (MA) in promoting salinity resistance by investigating several morphological, physiological, biochemical, and yield features in rice plants. In vitro evaluation demonstrated that rice seeds primed with MA enhanced the growth features of rice plants exposed to 4, 8, and 12 dS/m of salinity for 15 days in an agar medium. A pot experiment was carried out to evaluate the growth and development of MA-primed rice seeds after exposing them to similar levels of salinity. Results indicated MA priming in rice improved shoot and root biomass, photosynthetic pigment contents, leaf succulence, and leaf relative water content. It also significantly decreased Na+/K+ ratios in both shoots and roots and the levels of electrolyte leakage, malondialdehyde, and hydrogen peroxide, while significantly increasing proline content in the leaves. The antioxidant enzymes catalase, glutathione S-transferase, ascorbate peroxidase, and peroxidase, as well as the non-enzymatic antioxidants phenol and flavonoids, were significantly enhanced in MA-colonized plants when compared with MA-unprimed plants under salt stress. The MA-mediated restriction of salt accumulation and improvement in physiological and biochemical mechanisms ultimately contributed to the yield improvement in salt-exposed rice plants. Our findings suggest the potential use of the MA seed priming strategy to improve salt tolerance in rice and perhaps in other crop plants.


Subject(s)
Metarhizium , Oryza , Endophytes , Oryza/microbiology , Salt Tolerance , Antioxidants
2.
Protoplasma ; 256(1): 181-191, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30062531

ABSTRACT

Sapota (Achras sapota), a fruit tree with nutritional and medicinal properties, is known to thrive in salt-affected areas. However, the underlying mechanisms that allow sapota to adapt to saline environment are yet to be explored. Here, we examined various morphological, physiological, and biochemical features of sapota under a gradient of seawater (0, 4, 8, and 12 dS m-1) to study its adaptive responses against salinity. Our results showed that seawater-induced salinity negatively impacted on growth-related attributes, such as plant height, root length, leaf area, and dry biomass in a dose-dependent manner. This growth reduction was positively correlated with reductions in relative water content, stomatal conductance, xylem exudation rate, and chlorophyll, carbohydrate, and protein contents. However, the salt tolerance index did not decline in proportional to the increasing doses of seawater, indicating a salt tolerance capacity of sapota. Under salt stress, ion analysis revealed that Na+ mainly retained in roots, whereas K+ and Ca2+ were more highly accumulated in leaves than in roots, suggesting a potential mechanism in restricting transport of excessive Na+ to leaves to facilitate the uptake of other essential minerals. Sapota plants also maintained an improved leaf succulence with increasing levels of seawater. Furthermore, increased accumulations of proline, total amino acids, soluble sugars, and reducing sugars suggested an enhanced osmoprotective capacity of sapota to overcome salinity-induced osmotic stress. Our results demonstrate that the salt adaptation strategy of sapota is attributed to increased leaf succulence, selective transport of minerals, efficient Na+ retention in roots, and accumulation of compatible solutes.


Subject(s)
Fruit/chemistry , Photosynthesis/genetics , Proline/metabolism , Salt Tolerance/genetics , Salt-Tolerant Plants/chemistry , Agriculture , Salinity , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...